STUDENT'S NAME:	
SCHOOL NAME:	INDEX NUMBER
545/4	
CHEMISTRY	
Paper 4	
(Practical)	
July/Aug. 2022	
2 Hours	

AITEL JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

(PRACTICAL)

Paper 4

2 hours

INSTRUCTIONS TO CANDIDATES:

Answer all questions

Record your answers in this question paper in the spaces provided

Mathematical tables and non-programmable scientific calculators may be used

Reference books i.e. text books and books of qualitative analysis should not be used

FOR EXAMINERS USE ONLY		
QN 1	QN 2	Total

© 2022 AITEL Mocks Turn Over

1. You are provided with the following

BA3 which is a 2M Hydrochloric acid.

BA4 which is a 2M sodium hydroxide solution.

You are required to determine the molar heat of neutralization.

Procedure

By use of a measuring cylinder, transfer 25cm^3 of **BA3** into a plastic beaker. Stir with the thermometer and record the initial steady temperature of the solution as T_1 .

Measure 25cm^3 of **BA4** by use of a clean measuring cylinder and record its initial steady temperature T_2

Mix the two solutions in a plastic beaker. Note the highest temperature reached by the solution.

Record your results in the table below.

(05 marks)

Initial temperature of BA3 , T ₁ (⁰ c)	
Initial temperature of BA4 , T ₂ (⁰ c)	
Average Initial temperature, $T_3 = \left(\frac{T_1 + T_2}{2}\right)({}^{0}c)$	
Highest temperature reached by the solution	
Temperature rise	

Questions

(a) Calculate the number of moles of **BA3** that reacted.

(04 marks)

(b) Calculate the number of moles of BA4 that reacted.	(04 marks)
(c) (i) Calculate the heat of neutralization (specific heat capacity of solution is 4.2J/g/solution is 1g/cm³).	⁰ c, density of (06 marks)
(ii) Write an ionic equation that took place.	(02 marks)
(d) Calculate the molar heat of neutralization of sodium hydroxide.	(03 marks)

3 Turn Over

2. You are provided with substance **X** which contains two cations and a single anion. Carryout the following tests to identify them. Identify any gas(es) which may be evolved. Write your observations and deductions in the table below.

Tests	Observations	Deductions
(a) Heat a spatula endful		
of X in a dry boiling tube		
strongly until there is no		
further change		
(1) 11 1 1		
(b) dissolve a spatula endful of X in about		
6cm ³ of distilled water		
and followed by 5cm ³		
sodium hydroxide		
solution. Filter and keep		
both the filtrate and the		
residue.		
A 11 191		
Add dilute nitric acid to the filtrate until the		
solution is just acidified.		
Divide the resultant		
solution into portions		
(i)To the first potion, add		
sodium hydroxide		
dropwise until in excess.		
(ii)To the second a suit.		
(ii)To the second portion, add Ammonia solution		
dropwise until in excess		
arop wise and in excess		

(iii) To the third portion, add 2-3 drops of potassium iodide	
(iv) To the fourth portion, add 3-4 drops of lead (II) nitrate followed by dilute nitric acid	
(v) To the fifth portion, add 3-4 drops of barium nitrate followed by dilute nitric acid	
(vi) Use the sixth part to carry out a test of your own to confirm the anion present	
(d)Wash the residue with dilute nitric acid and divide the resultant solution into two parts (i)To the first portion, add sodium hydroxide dropwise until in excess, leave it to stand	

5 Turn Over

(ii)To the second portion,	
add ammonia solution	
dropwise. Allow it to	
stand.	
Identify the	

Cations in X and

Anion in **X**.....

